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Abstract 

Background Undernutrition remains a global crisis and is a focus of Sustainable Development Goals. While there 
are multiple known, effective interventions, complex interactions between prevention and treatment and resource 
constraints can lead to difficulties in allocating funding. Simulation studies that use in silico simulation can help illu‑
minate the interactions between interventions and provide insight into the cost‑effectiveness of alternative packages 
of options.

Methods We developed an individual‑based microsimulation model based on the Global Burden of Disease (GBD) 
2021 study data to test a range of nutrition interventions, including antenatal interventions (iron and folic acid, mul‑
tiple micronutrients, and balanced energy protein supplementation) and child interventions (treatment for severe 
acute malnutrition, treatment for moderate acute malnutrition, and wasting prevention with small‑quantity lipid‑
based nutrient supplements). We also developed an analytic approach to process the results of the microsimulation 
and identify the optimal intervention funding allocation for a given budget size. We use Ethiopia as an example in this 
paper.

Results In our illustrative example of Ethiopia, the reallocation of the baseline budget to minimize disability‑adjusted 
life years (DALYs) resulted in first funding the antenatal multiple micronutrients to their maximum coverage and then 
funding treatment for severe child acute malnutrition. Relative to the baseline allocation, the reallocation optimized 
to minimizing DALYs resulted in 592,000 fewer annual DALYs, constituting an 8.3% reduction in total DALYs in Ethiopia.

For budgets larger than the baseline, our model recommended funding first targeted moderate acute malnutrition 
treatment, second universal moderate acute malnutrition treatment, third wasting prevention with small‑quantity 
lipid‑based nutrient supplements, and fourth balanced energy protein supplementation.

Conclusions Our simulation is a novel model for estimating optimal allocation of spending on antenatal and child 
health nutrition interventions which accounts for the interaction between preventive and therapeutic approaches. 
Our illustrative results show that an optimized reallocation of current spending can substantially improve 
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pregnancy‑related and child health without additional funding. We hope this model can add validity and confidence 
to prior results to aid stakeholders in funding decisions.

Keywords Maternal and child health, Simulation model, Health policy, Optimal allocation, Antenatal care, Young 
child feeding, Child nutrition

Background
Undernutrition remains a global crisis, contributing sig-
nificantly to the burden of disease and hindering progress 
toward the Sustainable Development Goal (SDG) to end 
hunger [1]. This persistent challenge demands urgent 
action and investment in proven interventions to address 
undernutrition during pregnancy and childhood.

Despite a range of known effective interventions, cov-
erage remains insufficient and unevenly distributed, 
particularly in regions with the greatest need [2]. Two 
key areas where current practices lag are antenatal sup-
plementation and the prevention and treatment of child-
hood acute malnutrition (AM). While iron and folic acid 
(IFA) supplementation is the standard of care in many 
settings, the World Health Organization (WHO) advo-
cates for research on IFA-containing multiple micronu-
trient (MMN) supplements [3] and balanced energy and 
protein (BEP) supplementation for undernourished preg-
nant people [4]. Notably, there is suggestion that BEP 
supplementation targeted to undernourished pregnan-
cies (in contrast to undernourished populations) may be 
a cost-effective strategy [5]. Furthermore, WHO recently 
issued new guidance on the prevention and treatment of 
AM among children under 5 [6]. These guidelines pro-
vide recommendations for the treatment of moderate 
acute malnutrition (MAM) in a targeted fashion in addi-
tion to the prior recommendations for treating severe 
acute malnutrition (SAM). It additionally issues new rec-
ommendations for the prevention of AM with strategies, 
including the consideration of medium- or small-quan-
tity lipid-based nutrient supplementation (MQ-LNS or 
SQ-LNS), particularly in contexts of high food insecurity.

Even with the recognized need for scaling up nutrition 
interventions, resource constraints and the complexity 
of maximizing health impact with limited budgets pose 
significant challenges [7]. While prevention is generally 
more effective [8], resource allocation decisions must 
consider various factors, including intervention costs, 
population reach, and potential interactions between 
different interventions. In silico models offer a valuable 
tool for guiding decision-making by simulating inter-
vention effectiveness and cost-effectiveness. Existing 
models like the multiple micronutrient supplementa-
tion (MMS) cost–benefit tool [9], Food Assistance Cost-
Effectiveness Tool for Specialized Nutritious Foods 
(FACET4SNF) [10], community-based management of 

acute malnutrition (CMAM) costing tool [11], and World 
Breastfeeding Costing Initiative (WBCi) [12] provide 
insights into specific interventions, while the Micro-
nutrient Intervention Modeling Project or MINIMOD 
focuses on micronutrient interventions [13]. The Optima 
Nutrition model [14], utilizing the Lives Saved Tool or 
LiST [15], offers a broader analysis but has limitations 
since MAM treatment cannot be run as an independent 
intervention from SAM treatment, limiting their ability 
to differentiate impact and interactions. The develop-
ment of additional models that can incorporate targeted 
MAM treatment and evaluate optimal spending alloca-
tions could enhance decision-making by providing robust 
evidence across multiple platforms. In particular, conclu-
sions that are robust across multiple models may reduce 
concerns regarding structural uncertainty [16].

In this interest, we developed an individual-based 
microsimulation model using Global Burden of Disease 
(GBD) 2021 study data to estimate the health impact of 
several nutrition-related interventions and paired it with 
an allocative efficiency analysis to determine allocation of 
intervention spending to optimize impact for a specified 
budget size(s). In this paper, we provide an overview of 
our simulation and include results specific to Ethiopia as 
an illustrative example.

Our team acknowledges that not all people who get 
pregnant or give birth are women, and we therefore strive 
to use more inclusive language that encompasses all iden-
tities without othering individuals. We are also aware 
that women often face unique challenges, and focused 
work on women and girls is essential to improving 
health for all. The accepted language in literature is often 
women-centric such as “maternal health” or “women of 
reproductive age.” Our team advocates for the use of lan-
guage inclusive to all people that also honors the unique 
experiences and needs of women. Therefore, throughout 
this paper, we try to use gender inclusive language such 
as “pregnancy-related health” or “women and birthing 
people of reproductive age.” More information and a full 
glossary can be found in Additional file 1: Appendix 1.

Methods
Our model consists of two main components: (1) an indi-
vidual-based microsimulation model of health events and 
(2) an allocative efficiency analytic model that processes 
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the results of the microsimulation model and outputs 
the optimal intervention funding allocation for a given 
budget size.

Baseline health model
We utilize Vivarium [17], a mature, open-source, Python-
based simulation framework for our baseline health 
model. Published examples of models utilizing Vivar-
ium can be found elsewhere [5, 18, 19]. The data for this 
model is publicly available [20, 21]. For this application, 
our model consists of a closed cohort of simulated indi-
viduals that we track across discrete time steps. Simu-
lated individuals are assigned various attributes (such as 
age, sex, risk factor exposures, disease status, and vital 
status) that evolve over time and influence their trajec-
tory through the simulation. Specifically, at each time 
step, simulated individuals are subject to some prob-
ability of a disease event — for example, measles (non-
infected individuals may become infected, and infected 
individuals may recover or die), which is modified by 
their other assigned attributes such as age, sex, and risk 
factor exposures. The model is calibrated such that indi-
vidual-level heterogeneity reflects the appropriate mag-
nitude across specific attributes, while averages across 
simulated individuals reflect appropriate population-level 
statistics.

The primary data source for our model was the GBD 
2021 study, which estimates mortality and disability at 
the location-, year-, sex-, and age-specific level across 
hundreds of diseases, injuries, and risk factors [22–26]. 
Each time step spent affected by a morbidity-causing 
condition results in accumulation of years lived with dis-
ability (YLDs) in accordance with the disability weight 
(DW) of that condition utilized in the GBD study. Years 
of life lost (YLLs) are accumulated in accordance with 
the theoretical minimum risk life expectancy (TMRLE) 
specific to a simulated individual’s age at the moment of 
death as informed from the GBD study.

Figure  1 represents all modeled components in our 
baseline health model and the interactions between 
them, which are discussed in more detail in the follow-
ing sections. We separated our baseline health model 
into two distinct simulated population groups: pregnant 
women and birthing people and children under 5. Our 
simulation utilizes Monte Carlo methods to propagate 
parameter uncertainty throughout the model, which is 
covered in more depth in Additional file 1: Appendix 8.

Pregnancy simulation
The population structure, divided into 5-year age 
groups, of the simulated cohort of pregnancies is 
informed from demographic estimates of women and 
birthing people of reproductive age (10–54 years) 

paired with estimates of age-specific fertility rates from 
the GBD study at a country- and year-specific level [22]. 
Each simulated individual begins the simulation on day 
0 of their pregnancy in our model. Possible pregnancy 
outcomes include live birth, stillbirth, and abortion/
miscarriage, with relative frequencies informed from 
GBD estimates. Infant sex is determined according 
to estimates of live births by sex from the GBD study. 
Pregnancy duration is determined according to the 
location- and sex-specific gestational age distribution 
of live births in GBD for both live births and stillbirths. 
For pregnancies that result in abortion/miscarriage, 
duration is determined according to a uniform distribu-
tion between 6 and 24 weeks. Each simulated individual 
is also assigned a continuous hemoglobin concentration 
and a dichotomous exposure for prepregnancy BMI 
above or below 18.5, each informed from GBD risk 
exposure estimates. Hemoglobin and BMI exposures 
are correlated to one another as informed from the 
Woman First trial [27] (more details in Additional file 1: 
Appendix 2).

We advanced the simulation clock in increments of 
7-day time steps and adjusted simulant ages accordingly. 
We used pregnancy-specific hemoglobin threshold values 
for anemia and simulants’ hemoglobin values to assign 
severity-specific anemia exposures and YLDs due to ane-
mia accrued according to the corresponding disability 
weight (more details in Additional file 1: Appendix 2).

Simulated birth events occur when the simulation time 
clock reaches the end of a simulant’s assigned pregnancy 
duration. At the moment of birth, simulants experience 
incident nonfatal or fatal cases of pregnancy-related 
disorders according to the population-level age- and 
location-specific probability from GBD that is further 
modified by their hemoglobin concentration at birth. 
Pregnancy-related disorders in this model are defined 
as all conditions resulting in a loss of health tied to preg-
nancy, birth, or postpartum complications. A full list of 
the included health conditions can be found in Addi-
tional file  1: Appendix  2. Incident, nonfatal pregnancy-
related disorder causes accumulate YLDs as estimated in 
the 2021 GBD study. In a similar manner to pregnancy-
related disorders, simulants also may experience inci-
dent cases of postpartum hemorrhage at birth with a 
likelihood modified by their hemoglobin exposure. For 
simulants that experience incident cases of postpartum 
hemorrhage, we applied a corresponding decrease on 
their postpartum hemoglobin level. We assigned infant 
birthweight according to the joint distribution with ges-
tational age at birth (equivalent to pregnancy duration) 
from GBD and further correlated with joint antenatal 
anemia and pre-pregnancy/first trimester BMI exposure. 
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Details on the magnitude and data sources of these 
effects can be found in Additional file 1: Appendix 2.

Simulants are followed for anemia morbidity in the 
pregnancy simulation for an additional 6 weeks follow-
ing birth before exiting the simulation. No background 
mortality due to causes other than pregnancy-related dis-
orders is considered in the pregnancy simulation. Due to 
the limited time frame of pregnancy and relative health 
of the population of women of reproductive age, back-
ground mortality is negligible compared to pregnancy-
related disorders.

Childhood simulation
We initialized the simulated population of children under 
5 with the birth events in the pregnancy simulation. Each 
live birth that occurs in the pregnancy simulation is ini-
tialized into the simulation on day 0 of their life, with 
values for sex, gestational age at birth, and birthweight as 
determined in the pregnancy simulation. Our model pro-
gresses in time steps of 4 days, and we track ages within 
the age groups of 0–6 days, 7–28 days, 1–5 months, 6–11 
months, 12–23 months, and 2–4 years. Assigned gesta-
tional age and birthweight exposures affect mortality 
due to causes affected by the risk factor in the GBD 2021 

Fig. 1 Diagram of all modeled components and the causal relationships between them in the microsimulation health model. Colored components 
represent interventions, and bolded components represent model outputs. Arrows represent causal impacts, and dashed lines represent noncausal 
correlations
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study [23] for the first 28 days of life, in a manner adapted 
from the GBD risk effect model described in Additional 
file 1: Appendix 3.

Starting at 28 days of life, we assigned four-category 
exposure values for wasting (based on weight-for-height 
z-scores — WHZ), stunting (based on height-for-age 
z-scores — HAZ), and underweight (based on weight-
for-age z-scores — WAZ). For all three metrics, we 
included exposure categories of severe (z-score < − 3), 
moderate (− 3 ≤ z-score < − 2), mild (− 2 ≤ z-score < − 1), 
and unaffected (z-score > − 1) with exposure prevalence 
informed from 2021 GBD study estimates. We addition-
ally subdivided the moderate wasting exposure category 
into two substates: WHZ between − 3 and − 2.5 and 
WHZ between − 2.5 and − 2, in order to support the tar-
geted MAM treatment intervention in our model. The 
relative exposure of each of these substates is informed 
from the most recently available Demographic Health 
Survey (DHS) data for the modeled location pooled 
across age groups and sexes [28], and relative morbidity 
and mortality risk of each substate is derived from the 
GBD 2021 study estimates.

We assigned each simulant a fixed stunting percentile 
throughout life such that a stunting exposure value may 
change as simulants age into the next age group with a 
different population-level exposure distribution, but the 
percentile within the age-specific population will not 
change. We model a dynamic transition model of child 
wasting that is calibrated to the GBD exposure distribu-
tion and wasting state-specific mortality rates, estimates 
of wasting incidence rates from longitudinal cohort stud-
ies that tracked child anthropometry in low- and low-
middle-income countries (details in Additional file  1: 
Appendix  4), and observed recovery rates from MAM 
and SAM in the ComPAS trial [29] under the assumption 
of a steady-state equilibrium (more details in Additional 
file  1: Appendix  4). This calibration allows us to esti-
mate average recovery rates from MAM and SAM states 
among populations without access to treatment, which 
are generally not available in the literature (with some 
exceptions [30]). Notably, wasting transition rates do not 
vary by moderate wasting substate exposure.

We assume no correlation between stunting and wast-
ing exposures. Underweight exposures are assigned 
according to observed location-, age-, and sex-specific 
correlation with four-category wasting and four-category 
stunting obtained from the DHS and are updated dynam-
ically as simulant age, wasting exposure, and/or stunting 
exposure evolve throughout the simulation (more details 
in Additional file 1: Appendix 4).

Infant birthweight influences population-level stunt-
ing exposures used to determine individual-level stunt-
ing exposures in accordance with evidence from the 

literature [31]. Infant birthweight influences wasting 
state at 28 days of life in accordance with observed data 
from DHS but does not influence wasting transition rates 
thereafter. More details on the impact of birthweight on 
child growth failure can be found in Additional file  1: 
Appendix 5.

We model incidence (and associated morbidity) and 
mortality due to diarrheal diseases, lower respiratory 
infections, malaria, and measles from ages 28 days to 5 
years. Incidence and mortality rates due to these causes 
are modified by stunting, underweight, and wasting expo-
sures (including moderate wasting substate exposures) in 
accordance with GBD estimates of child growth failure 
effects, described elsewhere [23]. Briefly, GBD methods 
account for overlap between these indices of child growth 
failure to ensure impacts on morbidity and mortality are 
not overestimated. We additionally model morbidity and 
mortality due to protein energy malnutrition, which is 
entirely informed by wasting exposure among simulants 
aged 28 days to 5 years. Finally, we model background 
mortality due to all causes other than those directly mod-
eled for all ages in our child simulation.

Intervention models
Our model considers three antenatal supplementation 
intervention products, including IFA, MMN, and BEP 
supplementation, in addition to three child nutrition 
interventions, including treatment for SAM, treatment 
for MAM, and wasting prevention with SQ-LNS.

We assume that antenatal supplementation prod-
ucts are distributed at routine antenatal care visits and 
taken for a duration of 6 months. We assume that BEP 
is provided in addition to MMN for pregnancies with a 
pre-pregnancy/first trimester BMI of less than 18.5, and 
otherwise antenatal supplementation products are mutu-
ally exclusive at the individual level. We additionally 
assume that BEP + MMN are only provided to low BMI 
pregnancies if MMN is also provided to adequate BMI 
pregnancies.

Antenatal supplementation products affect the prob-
ability of stillbirth, gestational age at birth, and birth-
weight, with effect sizes shown in Table  1. Intervention 
mean differences in antenatal hemoglobin are applied at 
the individual level at 8 weeks of gestation. We assume 
that reduction in stillbirth outcomes associated with 
interventions results in increases in live birth outcomes, 
with no changes in other birth outcomes such as abor-
tion, miscarriage, or ectopic pregnancy. For intervention 
effects on preterm birth, we calculated country- and year-
specific population mean differences that resulted in the 
relative risks reported in Table  1 and applied the mean 
differences to our continuous measure of gestational age 
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at birth at the individual level in our simulation. Notably, 
for the effect of MMN on preterm birth, we estimated a 
population mean difference conditional on gestational 
age at birth + / − 32 weeks, such that there was a larger 
effect among those born at less than 32 weeks’ gestation 
than those born at greater than 32 weeks’ gestation so 
that both the effects on preterm birth (< 37 weeks) and 
very preterm birth (< 32 weeks) were replicated.

In our model, the SAM treatment intervention is 
administered to incident cases of SAM, as defined by 
WHZ < − 3, between 6 and 59 months of age. In uni-
versal protocol of the MAM treatment intervention, 
treatment is administered to incident cases of MAM, as 
defined by WHZ between − 2 and − 3 and between 6 and 
59 months of age. The targeted protocol of the MAM 
treatment intervention is administered to those eligible 
for the universal MAM treatment intervention who also 
satisfy at least one of the following criteria: (a) less than 
24 months of age, (b) WHZ between − 2.5 and − 3, or 
(c) WAZ less than − 3. Treatment protocol and time-to-
recovery for both the MAM and SAM interventions are 
informed from the intervention arm of the ComPAS trial, 
which stipulates the use of ready-to-use therapeutic food 
(RUTF) and regular, often weekly, monitoring and treat-
ment until recovery [29]. We assume that a fraction of 
cases does not respond to treatment and recover accord-
ing to the untreated recovery rates in our wasting model.

In our model, SQ-LNS supplementation begins at 6 
months of age for a duration of 12 months for all infants. 
SQ-LNS supplementation decreases the prevalence of 
moderate and severe stunting and increases the preva-
lence of no stunting in accordance with effects obtained 
from study authors of an individual participant meta-
analysis on the intervention [39]. We model effects of 
SQ-LNS supplementation on transition rates from no 
wasting to mild wasting, mild wasting to moderate wast-
ing, and moderate wasting to severe wasting with no 
effects on wasting recovery rates. These effect sizes are 
calibrated to replicate the wasting prevalence ratios from 

the same source as stunting effect sizes, as described in 
Additional file 1: Appendix 6.

We assume that the initial point of care for all child 
nutrition interventions is monthly community manage-
ment of acute malnutrition (CMAM) screenings. We 
assume that children are assessed for acute malnutri-
tion and referred for treatment as appropriate at these 
meetings, and that SQ-LNS product counseling and dis-
tribution occurs at these meetings as well, as has been 
performed in trial settings [40]. Notably, this assump-
tion dictates that for a population of 100 children 6–59 
months, 5 of whom are afflicted with SAM, all 100 chil-
dren would be screened in order to reach and treat the 
five afflicted children for SAM.

Optimization structure
Scenario layout and optimization function
We ran the health model for every possible combination 
of our modeled interventions. We rely on the key assump-
tion that individuals within our simulated population are 
independent of one another in that the health status of 
one individual does not impact any others. This allows us 
to assume that the population health status under 50% 
coverage of a given intervention can be equivalently rep-
resented as the average between the population health 
status under 100% coverage of the intervention and the 
population health status under 0% coverage.

In each scenario, we record counts of deaths, stillbirths, 
YLLs, YLDs, incident wasting cases, person-time (total 
time simulants spent alive), and intervention administra-
tion counts that occurred in our simulated populations. 
Deaths, YLLs, and YLDs are stratified by pregnancy and 
child populations, and person-time counts are stratified 
by stunting state and age group for children.

We use the scipy.optimize package in Python [41] to 
perform our allocative efficiency analysis. Inputs to our 
optimization function include the recorded health out-
comes for each modeled scenario and the calculated cost 
of each scenario (obtained by multiplying the recorded 
intervention administration counts for each scenario by 

Table 1 Antenatal intervention effects

MD mean difference, RR relative risk
a Effect specific to subpopulation of undernourished women and birthing people

Outcome Iron folic acid (IFA), relative to 
no supplementation

Multiple micronutrients (MMN), 
relative to IFA

Balanced energy protein 
(BEP), relative to MMN

Antenatal hemoglobin, grams per liter MD = + 7.8 (4.08, 11.52) [32] MD = + 0 MD = + 0

Stillbirth RR = 1 RR = 0.91 (0.71, 0.93) [32] RR = 0.39 (0.19, 0.80) [33]

Birthweight, grams MD = + 57.73 (7.66, 107.79) [34] MD = + 45.16 (32.31, 58.02) [5, 35] MD = + 66.96 (13.13, 120.78) [36]a

Preterm birth (< 37 weeks) RR = 0.90 (0.86, 0.95) [37] RR = 0.91 (0.84, 0.99) [38] RR = 1 [36]

Very preterm birth (< 32 weeks) ‑ RR = 0.81 (0.71, 0.93) [35]
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the intervention unit costs). The optimization objective 
is to find the fractional combination of scenarios that 
maximizes/minimizes the specified health quantity (e.g., 
minimize DALYs or maximize person-time). With this 
information, we calculate overall cost, health impact, 
and intervention coverage as outputs of our optimization 
function for a single budget size. Further information on 
the optimization constraints can be found in Additional 
file 1: Appendix 7.

Illustrative example parameters
As an illustrative example, we ran the model for Ethio-
pia in 2021. We utilized a simulated population size of 
1,600,000 pregnancies and informed the simulated child 
population from the resulting birth outcomes from a 
random sample of 400,000 of these pregnancies. These 
population sizes were selected as the minimum size that 
achieved stability in the difference between health out-
comes across modeled scenarios among the antenatal 
and child populations, respectively. We scaled results 
from the pregnancy and child baseline health models by 
a factor of 3.5 and 14, respectively, to reflect the total esti-
mated number of births in Ethiopia in 2021. We ran our 
simulation model for 20 Monte Carlo uncertainty draws 
(see Additional file 1: Appendix 8).

Values for baseline intervention coverage, maximum/
saturation intervention coverage, and intervention costs 
used for this model run are displayed in Table  2. Inter-
vention costs used in our model represent product costs 
with a common non-product cost multiplier. The product 

costs were obtained from the UNICEF Supply Catalogue 
for IFA, MMN, BEP, and SQ-LNS [42] interventions and 
the ComPAS trial [29] for MAM and SAM treatment 
interventions. Costs from the UNICEF Supply Cata-
logue were obtained in November of 2023. We assumed 
there were no product costs associated with CMAM 
screenings. Non-product costs were included through 
a constant 37% increase, as was used in the LiST model 
which represents program costs (15% increase), logistics 
and waste (5%), and inefficiencies (17%) [43]. We do not 
include service costs in this model.

We performed our allocative efficiency analysis at the 
estimated baseline budget size in addition to 25 evenly 
spaced increments between 0 and the spending required 
to reach saturation coverage of all interventions. We per-
formed allocative efficiency analysis at the draw level as 
well as for the average result across all draws from the 
underlying health model.

To assess the sensitivity of these results to the assump-
tions in our costing model, we conducted a change-point 
analysis for the successive ordering of products, where 
we determined the change in price to each single prod-
uct that would result in a change to the optimal ordering 
of products introduced in response to successively higher 
budgets.

Results
High‑level results
From our assumed intervention coverage values and 
intervention costs, we estimated total annual spending 

Table 2 Intervention coverage and cost assumptions

IFA iron and folic acid, MMN multiple micronutrients, BEP balanced energy protein, SAM severe acute malnutrition, MAM moderate acute malnutrition, SQ-LNS small 
quantity lipid-based nutrient supplementation, CMAM community management of acute malnutrition, USD United States dollars

Intervention Baseline coverage Saturation coverage Product cost (2023 USD) Final cost (2023 USD)

IFA 60.2% (95% CI: 48.7, 72.6) (per‑
sonal communication of work 
by Nat Henry at CIFF)

75.7% (ANC1; GBD 2021) US $2.27 per supplemented 
pregnancy

US $3.11 per supplemented 
pregnancy

MMN 0%, assumption 75.7% (ANC1; GBD 2021) US $3.47 per supplemented 
pregnancy

US $4.75 per supplemented 
pregnancy

BEP 0%, assumption 75.7% (ANC1; GBD 2021) US $40.28 per supplemented 
pregnancy

US $55.18 per supplemented 
pregnancy

SAM treatment 48.8% (95% CI: 37.4, 60.4) [44] 70%, assumption US $41.84 per treated child US $57.32 per treated child

MAM treatment 15% (95% CI: 10, 20), assump‑
tion. Baseline coverage 
assumed to be universal imple‑
mentation of MAM treatment 
intervention

70%, assumption (applies 
to both universal and targeted 
implementations of MAM 
treatment intervention)

US $29.70 per treated child
(applies to both universal 
and targeted implementations 
of MAM treatment interven‑
tion)

US $40.69 per treated child
(applies to both universal 
and targeted implementations 
of MAM treatment intervention)

SQ‑LNS 0%, assumption 70%, assumption US $35.75 for 12‑month sup‑
plementation

US $48.98 for 12‑month sup‑
plementation

CMAM screening 48.8% (95% CI: 37.4, 60.4), 
assumed to be maximum 
of SAM treatment, MAM treat‑
ment, and SQ‑LNS baseline 
coverage

70%, assumption US $0 per child screened US $0 per child screened
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on our modeled interventions to be US $47.1 (95% uncer-
tainty interval (UI): 38.8, 58.0) million in Ethiopia, with 
7.7 (95% UI: 6.5, 9.2) million allocated to IFA, 20.1 (95% 
UI: 15.4, 27.9) million allocated to SAM treatment, and 
19.3 (95% UI: 12.1, 27.1) million allocated to universal 
MAM treatment (Fig. 2). Our model estimated 18.0 (95% 
UI: 15.1, 21.7) million annual DALYs among pregnan-
cies and children under 5 at baseline due to the modeled 
childhood and pregnancy-related health conditions. This 
was estimated to be 986,000 (95% UI: 535,000, 1,588,000) 

DALYs fewer than the 19.0 (95% UI: 15.8, 22.9) million 
annual DALYs under the counterfactual scenario of zero 
spending on our modeled interventions.

Baseline results
We found that reallocation of the baseline budget to 
minimize DALYs resulted in funding MMN to its maxi-
mum coverage level of 75.6%, followed by investment of 
the remaining budget into treatment for SAM (which 
attained 62.7% population coverage). When the baseline 

Fig. 2 A Spending allocation by intervention at baseline and under optimized reallocations of the baseline budget in Ethiopia. B Intervention 
coverage at baseline and under optimized reallocations of the baseline budget in Ethiopia. IFA, iron and folic acid; MMN, multiple micronutrients; 
BEP, balanced energy protein; SAM, severe acute malnutrition; MAM, moderate acute malnutrition; SQ‑LNS, small‑quantity lipid‑based nutrient 
supplementation; Tx, treatment; USD, United States dollars; DALY, disability‑adjusted life year
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budget was reallocated to maximize child time spent not 
stunted, the budget was likewise first spent maximizing 
MMN, but then the remaining funds were allocated to 
SQ-LNS supplementation alone (which attained 16.4% 
population coverage). We maximize child time spent 
not stunted rather than minimizing child time stunted 
because minimizing child time stunted can lead to opti-
mizing for fewer children alive. These results fit with our 
modeling parameters since SQ-LNS impacts stunting 
and is a preventive treatment, while treatment for SAM 
directly impacts wasting, which is more deadly for young 
children. Figure 2A displays the baseline and reallocated 
intervention-specific funding, and Fig.  2B displays the 
baseline and reallocated intervention-specific coverage 
levels.

Relative to the baseline allocation, the reallocation 
optimized to minimize DALYs resulted in 592,000 fewer 
annual DALYs (8.3% less), and the reallocation optimized 
to maximize child time spent not stunted resulted in 
187,000 fewer annual DALYs (6.2% less) among pregnan-
cies and children under 5. This amounted to a 60% and 
19% increase in DALYs averted relative to zero spending, 
compared to baseline allocation, for the reallocation opti-
mized to DALYs, and the reallocation optimized to child 
time spent not stunted, respectively. Figure  3 displays 
annual DALYs under each of these scenarios.

Expanding budget results
When we performed this allocative efficiency analy-
sis for successively larger budget sizes and optimized 
to minimize DALYs, our model found that MMN sup-
plementation alone should be prioritized until MMN 
reaches its maximum coverage level, followed by the 

SAM treatment intervention as budget size allows. 
Starting at annual budget sizes over US $50 million, our 
model recommends investment in the targeted MAM 
treatment followed by universal MAM treatment, SQ-
LNS, and finally targeted BEP supplementation at the 
largest budget sizes. The annual budget required to 
achieve maximum impact (reach saturation coverage 
of most impactful interventions) was US $268 (95% UI: 
226, 283) million (approximately 5.7 times more than 
we estimate is currently spent). Figure 4A displays the 
baseline and reallocated intervention-specific expendi-
tures, and Fig. 4B displays the baseline and reallocated 
intervention-specific coverage levels across increasing 
budget sizes.

Panel C in Fig.  4 displays the annual DALYs averted 
relative to zero spending on any of the modeled inter-
ventions at each successive budget size, with a total of 
2.2 (95% UI: 1.4, 3.0) million annual DALYs averted at 
the maximum impact level. Panel D of Fig.  4 displays 
the incremental cost-effectiveness ratio (ICER) in USD 
per DALY averted relative to zero spending on any of 
our modeled interventions across increasing budget 
sizes; note that all ICERs represented in this figure are 
positive with positive health gains (DALYs averted) 
and positive incremental costs (the northeast quad-
rant in as described by [45]). Notably cost-effectiveness 
decreases (ICER increases) with increasing budget as 
the most cost-effective interventions are prioritized at 
lower budget sizes, with all the ICER at all budget sizes 
at or below 121.84 (95% UI: 89.18, 202.70) dollars per 
DALY averted. Notably, without simultaneous cover-
age of MAM treatment or SQ-LNS interventions, US 
$27 (95% UI: 22, 37) million was required to maintain 

Fig. 3 Annual disability‑adjusted life years (DALYs) among pregnancies and children under 5 by scenario in Ethiopia
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saturation coverage (70%) of the SAM treatment inter-
vention. However, the full scale-up of MAM treatment 
and SQ-LNS interventions to saturation coverage (70%) 
reduced the operating cost of maintaining saturation 
coverage of the SAM treatment intervention by approx-
imately half to US $15 (95% UI: 11, 23) million annually.

Confidence and sensitivity of results
Our simulation was run with 20 draws. To understand 
the uncertainty in the efficacy results from the simula-
tion, we analyzed the results at the draw level. A total of 
100% of draws resulted in intervention priority ordering 
starting with MMN, followed by SAM treatment and 
targeted MAM treatment. However, the relative priority 
ordering of the universal MAM treatment, SQ-LNS, and 
BEP interventions had significant draw-level variation. 
Specifically, BEP was prioritized behind universal MAM 
treatment and SQ-LNS in only 65% of draws, and univer-
sal MAM treatment was prioritized ahead of SQ-LNS in 

only 70% of draws (see Additional file 1: Appendix 8 for 
more information on draws).

We summarize the results of our change-point analy-
sis for all products in Table 3. We found, for example, to 
have SAM treatment be prioritized over MMN, and it 
would either need to cost US $19 or MMN would need 
to cost more than US $15, an over 100% change for both 
products. However, to have SQ-LNS change to be ahead 
of universal MAM, it would need to be US $44, only a 
10% change in cost. Similarly, to have SQ-LNS be pri-
oritized behind BEP, it would need to cost US $54, also 
about a 10% change. The change in cost of BEP is even 
smaller, less than US $1 to be prioritized over SQ-LNS.

Discussion
Our simulation provides a new model to estimate opti-
mal allocation of spending on antenatal and child nutri-
tion interventions utilizing a detailed health model 
informed from GBD study estimates that accounts for 

Fig. 4 A Annual intervention spending allocation optimized to DALYs among pregnancies and children under 5 by increasing budget size 
in Ethiopia. B Intervention coverage optimized to DALYs among pregnancies and children under 5 by increasing budget size in Ethiopia. C 
Disability‑adjusted life years (DALYs) averted among pregnancies and children under 5 relative to zero spending by increasing budget size 
with intervention spending allocation optimized to DALYs averted in Ethiopia. D Incremental cost‑effectiveness ratio (ICER) relative to zero 
spending by increasing budget size with intervention spending allocation optimized to DALYs averted in Ethiopia. IFA, iron and folic acid; MMN, 
multiple micronutrients; BEP, balanced energy protein; SAM, severe acute malnutrition; MAM, moderate acute malnutrition; SQ‑LNS, small‑quantity 
lipid‑based nutrient supplementation; USD, United States dollars; DALY, disability‑adjusted life year
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the interaction between preventive and therapeutic 
approaches. Our results show that an optimized reallo-
cation of current spending on these products can sub-
stantially improve pregnancy-related and child health 
without additional funding and provides direction and 
information on the confidence of results about how to 
best allocate expanded budgets to maximize impact. We 
find very low sensitivity to the initial optimized product 
results, which indicates greater confidence that MMN 
and the treatment of SAM will be cost-effective. How-
ever, the ordering of later products is highly sensitive 
to changes in costs, indicating a low confidence in the 
results and more similar benefit between products. This 
is true for both efficacy and cost-sensitivity analyses.

Our model provides additional benefit relative to exist-
ing options such as the MMS cost–benefit tool [9], the 
CMAM costing tool [11], the FACET4SNF model [10], 
WBCi [12], and MINIMOD [13] in that it integrates both 
antenatal and child micro- and macronutrition interven-
tions and performs allocative efficiency analysis of such 
interventions. Our underlying health model utilizes a 
similar framework as the LiST model that is utilized by 
Optima Nutrition, which, to the best of our knowledge, 
is the only other allocative efficiency model that evaluates 
similar interventions. However, our model differs from 
LiST in several ways. Firstly, LiST is a compartmental 
rather than microsimulation model and utilizes a vari-
ety of data sources described elsewhere [15] to inform 
baseline population and mortality dynamics, whereas 
our model primarily utilizes GBD study data. While our 
models generally utilize similar data sources for inter-
vention effect estimations, they differ with respect to the 
derivation of MAM and SAM treatment intervention 
impacts on recovery rates, with our model ultimately 
utilizing a slightly lower effect of MAM treatment on 

MAM recovery and slightly higher effect of SAM treat-
ment on SAM recovery [46]. Further, unlike our model, 
LiST applies intervention effects to subsets of the popu-
lation only; for instance, the effect of SQ-LNS is applied 
to the food-insecure portion of the population only [47]. 
With regard to the impact of the BEP supplementation 
intervention, our model benefits from a correlation of the 
population eligible for BEP (low BMI pregnancies) with 
low birthweight outcomes, which is not the case in the 
LiST and Optima Nutrition models [46]. These differ-
ences are a result of our use of microsimulation, rather 
than compartmental models (as is used for LiST), in this 
research. Unlike our model that accounts for correlation 
between wasting, stunting, and underweight exposures in 
the attribution of their effects on morbidity and mortal-
ity, LiST does not report to account for this in the esti-
mation of risk associated with wasting and stunting in 
their model. Notably, intervention protocols and defini-
tions may slightly differ between our models. LiST also 
supports several interventions not included in our model 
[46].

Our model benefits from high-quality and detailed 
age-, sex-, location-, and year-specific estimates from 
the 2021 GBD study and framework. A strength of this 
data source is how it accounts for correlation between 
wasting, stunting, and underweight exposures in its 
estimation of their impacts in morbidity and mortal-
ity; this avoids overestimation of the aggregate effects. 
Another strength is the continuous joint distribution of 
birthweight and gestational age at birth. Our modeling 
approach allows us to represent nonlinear interactions 
between intervention combinations in that the presence 
of prevention interventions may remove the need for 
treatment interventions at the individual level and the 
optimization can allow us to understand the sensitivity 

Table 3 Costing change‑point analysis of products

MMN multiple micronutrients, IFA iron and folic acid, SAM severe acute malnutrition, MAM moderate acute malnutrition, SQ-LNS small quantity lipid-based nutrient 
supplementation, BEP balanced energy protein, USD United States dollars

Product and standard cost in 2023 USD Cost to be prioritized over prior product in 
2023 USD

Cost to be prioritized behind next product in 
2023 USD

IFA, 3.11 per supplemented pregnancy US $2 — to be prioritized over MMN at the lowest 
budget sizes

N/A

MMN, 4.75 per supplemented pregnancy N/A — no prior product US $15

SAM treatment, 57.32 per treated child US $19 US $178

Targeted MAM treatment, 40.69 per treated child US $15 N/A — will never be less cost effective than universal 
MAM due to model constraints

Universal MAM treatment, 40.69 per treated 
child

N/A — will never be more cost effective than 
targeted MAM due to model constraints

US $45

SQ‑LNS, 48.98 for 12‑month supplementation US $44 US $54

Targeted BEP, 55.18 per supplemented preg‑
nancy

US $55 N/A — no later product
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of results to changes in costing. Finally, our model sup-
ports MAM treatment intervention as an independent 
program from SAM treatment that allows for testing of 
optimal coverage levels of these programs and addition-
ally supports a targeted implementation of the MAM 
treatment intervention in a manner intended to reflect 
the recent WHO guidelines on the matter. Our model 
additionally supports BEP supplementation targeting to 
undernourished pregnancies rather than undernourished 
populations, which is expected to reach a greater propor-
tion of those who may benefit from the intervention.

Our model is limited by the intensive computational 
resources required to run the microsimulation for our 
underlying health model, which we have performed on 
a high-performance computing cluster. Additionally, our 
model is limited in that it relies on assumptions and/or 
uncertain estimates of baseline intervention coverage and 
therefore baseline spending allocation. For instance, we 
assume that all antenatal care programs and CMAM pro-
grams through which the interventions would be deliv-
ered are fully functional up to the saturation caps.

We acknowledge that the intervention costs used in 
this analysis are not necessarily reflective of the true costs 
of implementing intervention programs at scale and are 
designed to provide a sense of optimization but are not 
designed to be used in practice as real cost estimates. 
One of the more notable limitations is that we do not 
attempt to include service costs, which LiST and other 
models do [48]. Our cost estimates are further limited 
by our assumption that the baseline budget can be real-
located effectively without additional loss of funding to 
inefficiencies, and by our assumption that the relation-
ship between costing and coverage is linear. We include 
the same proportional increase in costing based on prod-
uct costs, while in practice some interventions might 
require a higher or lower percent of funding for logistics 
and services — for example, IFA and MMN are similar 
products with similar distribution networks and so there-
fore might have more similar programmatic and logistics 
costs than are reflected here. Lastly, the costs included 
are not location specific. We hope to expand our costing 
strategy in future publications by utilizing programmatic, 
clinical trial, and GBD healthcare utilization data in order 
to add service costs and make estimates location specific 
as we plan to have multiple locations in future model 
versions.

Our baseline health model is limited in that it does not 
consider seasonality in wasting burden and relies on clas-
sification of acute malnutrition using WHZ alone rather 
than WHZ, mid-upper arm circumference (MUAC), 
and the presence of edema combined. Furthermore, 
our targeted MAM treatment intervention is inspired 
by the recent WHO guidelines but does not consider 

all recommended criteria for determining which MAM 
cases should receive treatment. Likewise, our model of 
BEP supplementation targeting is not exactly aligned 
with recommendations in the WHO guidelines. Rather 
than targeting at a population level, as is recommended 
by WHO, we utilize individual-level targeting, made 
possible through microsimulation. We do not model 
SQ-LNS intervention effects on anemia or vitamin A 
deficiency [49] in our model, nor do we consider a tar-
geted implementation of the intervention such as that 
suggested in the WHO guideline. Finally, while our model 
may not represent all causal pathways by which our mod-
eled interventions affect morbidity and mortality, as the 
absence of evidence between a given risk/outcome pair 
does not imply the absence of a causal association. Nota-
bly, we also do not consider feedback between wasting 
and stunting exposures (wasting leading to future stunt-
ing or vice versa) nor do we consider any causal impacts 
of infectious disease episodes leading to future wasting 
and/or stunting exposures, despite some evidence for 
such associations [50, 51]. The inclusion of these associa-
tions might lead to a concentration of wasting or stunting 
cases in certain individuals, allowing for more effective 
targeting. However, we do not expect the overall popula-
tion estimates to be impacted considerably.

Our next steps for this model include the develop-
ment of an interactive, online tool similar to the other 
models referenced here. This will allow user customiza-
tion of the optimization and a more in-depth review of 
our results. Additionally, we will integrate a targeted 
SQ-LNS intervention implementation and perform sen-
sitivity analyses around intervention cost assumptions, 
optimization measure, and location. We will also explore 
the robustness of intervention priority and evaluate the 
“next best” options. We also plan to extend this work for 
use in capacity planning for CMAM programs as they are 
adapted and/or expanded to align with updated guide-
lines on acute malnutrition prevention and treatment. 
Future extensions of this model may also include adapta-
tion to support nonlinear intervention cost and coverage 
functions and/or to support subnational-level allocative 
efficiency analysis within a given country.

Our model enables estimation of optimal spending 
allocations across several antenatal and child nutrition 
interventions for a specified budget size using high-qual-
ity GBD study estimates and may be compared to results 
from the existing LiST and/or Optima Nutrition models 
as an exploration of structural uncertainty in the preg-
nancy-related and child nutrition intervention optimi-
zation space. We hope our model can aid policy makers 
in decisions of how to best allocate future spending on 
pregnancy-related and child health nutrition interven-
tions, especially as they may be planning for integration 
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of the recent WHO guidelines on the treatment and pre-
vention of childhood acute malnutrition.

Conclusions
Our simulation offers a novel approach to optimizing 
spending on antenatal and child health nutrition inter-
ventions, leveraging the GBD study to create a detailed 
health model that can more accurately account for 
the interaction between preventative and therapeutic 
approaches. In this illustrative example, by reallocating 
funding to MMN and SAM treatment, 592,000 DALYs 
could be averted annually in Ethiopia without further 
financial investment. The addition of this new simulation 
allows for greater confidence in modeling results overall 
and new information for key decision-makers to consider.
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