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Sequencing-based wastewater surveillance offers a scala-
ble and cost-effective approach for monitoring pathogens 
circulating within communities. We explore innovations 
and necessary actions, calling for standardized proce-
dures for sample collection, processing, and sequencing, 
improved pathogen enrichment and targeted sequenc-
ing methods, and dedicated bioinformatics tools and 
databases to strengthen wastewater-based pathogen 
surveillance.

Background
Pathogen surveillance is pivotal for mitigating the spread 
of infectious diseases and safeguarding public health. 
Conventional microbial surveillance methods include 
a wide array of pathogen-specific culturing techniques, 
molecular assays, and strain typing schemes to monitor 
infectious agents and disease-causing serotypes, requir-
ing significant laboratory capacity and being difficult to 
scale up [1]. At the same time, clinical genomic surveil-
lance and testing provide data on an individual basis, 
requiring extensive sampling of individuals to evalu-
ate disease burden at the population level and to track 

circulating and emerging pathogens and their variants [2]. 
By contrast, wastewater genomic surveillance through 
sequencing and, more broadly, metagenomics-enabled 
microbial surveillance are scalable with regard to both 
the size of the sampled population and the number of 
monitored pathogens and do not require direct interac-
tion with the infected individuals, thereby reducing cost 
and labor, while minimizing potential pathogen expo-
sure [1, 3]. While methods such as qPCR or digital PCR 
provide highly sensitive detection and accurate quantifi-
cation of specific pathogen DNA or RNA in wastewater, 
they are limited to a predefined number of targets they 
can evaluate [2, 4]. In comparison, sequencing using both 
short- and long-read technologies enables comprehensive 
and accurate genotyping and, potentially, target-agnostic 
or semi-agnostic surveillance [4]. This capability allows 
for the unrestricted detection of pathogens and their var-
iants. Wastewater sequencing also allows identification of 
co-occurring pathogen lineages, including closely related 
ones, and, for certain pathogens, enables estimation of 
their relative prevalence within the population [2]. This 
is particularly significant given that different lineages can 
exhibit distinct phenotypic features, such as infectivity, 
transmissibility, and virulence, as exemplified by SARS-
CoV-2 lineages during the COVID-19 pandemic.

To reliably inform public health action along with tra-
ditional methods for pathogen monitoring, wastewater 
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surveillance must produce high-quality data, obtaining 
which critically depends on the design and implementa-
tion of the wet lab experiments and the quality of down-
stream bioinformatics analysis. To fully harness the 
potential of wastewater-based measurements, advance-
ments across multiple dimensions are needed. Key 
areas include: developing scenario-dependent standard-
ized procedures for sample collection, processing, and 
sequencing, selected for optimal performance; innovative 
enrichment methods to improve the recovery of patho-
gen nucleic acids from complex wastewater matrices, 
which are particularly critical for rare or low-abundance 
targets; and dedicated bioinformatics methods and data-
bases specifically tailored to wastewater data.

Standardizing sampling and processing 
of wastewater
Wastewater samples exhibit highly variable properties 
depending on the sampling site and stage during the 
sewage life cycle, the collection method, temperature, 
storage time, geographic region, and numerous other 
factors. This variability often necessitates longitudinal 
monitoring at the same location to reliably infer trends 
in pathogen or variant prevalence [4]. Further variation 
can arise from the laboratory staff and differences in pro-
tocols, equipment, and reagents used for pathogen con-
centration, nucleic acid extraction, library preparation, 
and sequencing, which can significantly affect the yield 
and integrity of the pathogen genetic material as well as 
the yield and quality of the sequencing data [4]. Given 
the substantial impact of these variables on downstream 
analysis, robust wastewater surveillance must account 
for and minimize sources of variation through stand-
ardized sampling methods and strategies, including the 
development of epidemiologically defined protocols for 
wastewater sampling site selection [5]. Achieving such 
standardization requires extensive prior assessment of 
the impact of numerous physico-chemical and biological 
factors on sampling efficiency and relevance. Addition-
ally, identifying and adopting the best-performing sample 
processing methods as standards is essential, recognizing 
that different pathogens and surveillance scenarios will 
require tailored standards.

Advances in target enrichment
Wastewater contains a complex genomic background 
dominated by a few commonly occurring taxa, while 
pathogens, by contrast, are typically present in trace 
quantities. Pathogens from different taxonomic groups 
can be concentrated or enriched using sequence-agnostic 
laboratory methods based on properties such as size, sed-
imentation coefficient, non-specific electrostatic binding, 
and other properties, or through RNA/DNA depletion 

[4]. However, the most effective methods for enrich-
ing pathogen sequences in the final data are targeted 
sequencing approaches [6]. While shotgun sequencing 
can theoretically detect any target without prior knowl-
edge about its nature and is occasionally applied for path-
ogen-agnostic wastewater surveillance [7], it typically 
results in wasted sequencing capacity and vastly insuffi-
cient coverage for sensitive pathogen detection [4, 6]. As 
sequencing costs continue to decline, ultra-deep shotgun 
sequencing could potentially address the problem of low 
sensitivity by achieving near-complete characterization 
of the genomic diversity of wastewater samples.

In contrast to shotgun sequencing, targeted ampli-
con sequencing of the whole pathogen genome or spe-
cific regions ensures sufficient coverage for detecting 
pathogenic variants and has become the gold standard 
for the surveillance of certain pathogens [4, 6]. How-
ever, designing, optimizing, and validating each ampli-
con panel requires significant effort to achieve uniform 
amplification across the entire target sequence for all 
relevant pathogen variants. Moreover, these panels must 
be continuously updated, as new mutations occurring in 
the primer binding regions can lower amplification effi-
ciency, resulting in variable amplicon abundance and 
even in the complete dropout of certain amplicons [8].

An alternative and widely used targeting approach uses 
hybridization-based capture probes, which can enrich 
target sequences by several orders of magnitude and are 
significantly more tolerant to potential mutations in the 
pathogen’s genome. Captured sequences can differ by 
up to 15% from known references, enabling the detec-
tion of related pathogens or variants [3]. As a downside, 
this method often produces a high proportion of off-
target reads, especially in wastewater samples, result-
ing in much lower sequencing coverage of the target(s) 
compared to amplicon sequencing [6]. Despite their high 
cost, commercial hybrid capture panels, capable of cov-
ering thousands of pathogen targets, represent a major 
advancement in scalability for the wastewater surveil-
lance field. Still, full genome coverage and genotyping are 
typically achievable only for a small number of targets, 
even when combined with deep sequencing [3]. Notably, 
both hybrid capture enrichment and especially amplicon 
sequencing rely on prior knowledge of target genome 
sequences, usually obtained through clinical sequenc-
ing. As a result, the surveillance of novel pathogens can 
face significant delays, particularly when timely action is 
critical.

A potentially transformative innovation in wastewater 
surveillance could be represented by adaptive sampling, 
a feature of Nanopore sequencing that enables selective 
ejection of the DNA or RNA molecule passing through 
the pore based on the partial sequence/signal obtained 
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from it in real time [9]. This technology offers two enrich-
ment strategies: positive selection for known pathogens 
and negative selection against irrelevant taxa in waste-
water, with the latter approach having the potential to 
facilitate pathogen-agnostic surveillance. It is important 
to note that adaptive sampling has important constraints. 
In particular, excessive strand rejection leads to a higher 
probability of pore blockage and lower total sequenc-
ing yield, although flow cells can be partially restored 
through washing [9]. Moreover, in the context of waste-
water surveillance, the heavy nucleic acid fragmentation, 
in particular of RNA, might prevent optimal enrichment 
efficiency for certain pathogens, requiring pre-filtering of 
the nucleic acids by fragment length using wet lab meth-
ods. Although the current level of enrichment achievable 
with adaptive sampling is vastly insufficient for directly 
analyzing low-abundant targets in wastewater metagen-
omes, there is significant potential for further improve-
ments in the decision time and accuracy for the partially 
sequenced molecules [9]. This could be further comple-
mented by improvements in pore chemistry to lower 
pore blockage rates and increase overall enrichment 
efficiency. By enabling enrichment during rather than 
before sequencing, adaptive sampling has the potential 
to change the paradigm in targeted sequencing, reduc-
ing reliance on wet lab-based enrichment, thereby over-
coming its associated limitations and biases, while saving 
time, effort, and costs. Despite the current limitations, it 
is important to explore whether adaptive sampling might 
find an application in wastewater surveillance already 
today. For instance, combining adaptive sampling with 
hybrid capture-based enrichment could significantly 
reduce the proportion of off-target reads, increasing the 
coverage of pathogen genomes and pathogen detection 
sensitivity.

Advancing bioinformatics methods and databases
Bioinformatics tools for taxonomic profiling of metagen-
omic data are usually inadequately equipped for waste-
water surveillance. First, they must balance accuracy with 
speed when querying their large genome reference data-
bases, which should ideally encompass all taxa expected 
to occur in the sampled metagenome. This lowers the tar-
get identification accuracy, decreases detection sensitiv-
ity, and complicates the differentiation of closely related 
pathogen variants [10]. Second, the generic genome 
reference databases used by taxonomic profilers do not 
specialize in covering the full, up-to-date spectrum of 
annotated variants known for many pathogens. Finally, 
bioinformatics methods must also account for the spe-
cifics of wastewater sequencing data, which is affected 
by nucleic acid degradation, fragmentation, and the 

limitations associated with target enrichment methods, 
such as PCR errors and amplicon dropout [8].

Consequently, dedicated bioinformatics methods and 
algorithms are needed for accurate detection and geno-
typing of pathogens and their variants in wastewater 
sequencing data. Significant effort has been invested in 
developing pipelines and algorithms, including the pleth-
ora of methods designed for SARS-CoV-2 variant com-
position estimation in wastewater [11]. However, such 
methods commonly focus on a single pathogen and one 
specialized genome reference database. The external ref-
erences they use as well as their internal representations, 
such as the UShER-derived mutational “barcodes” used 
by Freyja [2], are typically stored in non-interchangeable 
formats, making it challenging to adapt these methods for 
other pathogens. To address these limitations, computa-
tional methods should be designed to additionally accept 
user-sourced references in a universal interchangeable 
format, for instance, as representative genome sequences 
of the corresponding pathogens and their lineages/
strains. This flexibility would make the tools easily repur-
posable for new targets, while potentially ensuring scala-
bility for monitoring multiple targets in a single run, such 
as in data obtained from hybrid capture panels.

In parallel, systematic and comprehensive benchmark-
ing of existing bioinformatics tools for pathogen surveil-
lance is essential to identify the best-performing methods 
and algorithms for different scenarios. These tests should 
cover data obtained from various wastewater samples, 
processed with different laboratory methods, enriched 
and sequenced with different technologies, having dif-
ferent read lengths, error rates, and coverage levels. To 
achieve this goal, a diverse collection of benchmarking 
datasets must be established, reflecting the variability of 
wastewater surveillance data. These datasets could serve 
as community reference standards, akin to those used in 
the Critical Assessment of Metagenome Interpretation 
competition [10]. Furthermore, it is important to identify 
existing bioinformatics methods that can be repurposed 
for other targets and use standardized data structures 
representing reference pathogen genomes. These tools 
must also account for the types of genetic variation char-
acteristic for specific pathogens, such as mismatches, 
indels, and recombination events. The best-performing 
and universally applicable tools, or a combination of 
these, could form the foundation of flexible, accurate, 
and computationally efficient bioinformatics pipelines 
tailored to the unique challenges of wastewater-based 
pathogen surveillance.

In addition to dedicated bioinformatics methods, uni-
fied wastewater-specific pathogen genome reference 
databases are needed, which must cover all pathogens 
potentially detectable in wastewater, including known, 
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emerging, and cryptic variants. The construction of 
these databases should account for the observed vari-
ation in results caused by differences in the selected 
genome references for the same pathogens or strains 
[12]. Given the lower frequency of clinical sequenc-
ing between outbreaks, these databases should also 
incorporate pathogen-related metagenome-assembled 
genomes obtained from wastewater and other relevant 
environments. Obtaining such genomes could be facili-
tated by recent advancements in large-scale genomic 
screening tools such as branchwater [13] and LOGAN 
[14], which offer significant capabilities for interrogat-
ing large metagenomic wastewater sequencing samples. 
For example, branchwater offers rapid comparisons 
between query genomic references and large metagen-
omic datasets by identifying sequence similarities 
through sketch-based methods, enabling the detection 
of closely related microbes, including yet-uncultured 
and emerging pathogens. In combination with com-
prehensive databases such as the NCBI Sequence Read 
Archive (SRA) or the LOGAN collection of petabyte-
scale sequencing data assemblies, these tools help place 
novel sequences in a broader evolutionary context and 
identify ‘missing links’ or add previously undefined 
genomic context, providing high sensitivity in identify-
ing organisms with low prevalence that may otherwise 
go undetected. Additionally, with the advent of large 
language models, AI-driven tools can facilitate the inte-
gration of diverse databases, enabling the development 
of generalizable representations that can be flexibly 
adapted to different settings, thereby enhancing bioin-
formatics tools while minimizing the need for manual 
data curation [15]. Such approaches can improve patho-
gen detection and the ability to monitor cluster dynam-
ics, evolution, and potential reservoirs in wastewater 
ecosystems, providing researchers with crucial genomic 
information for advanced pathogen surveillance and 
public health monitoring.

Conclusions
Leveraging the full potential of wastewater surveillance 
for microbial pathogens necessitates the development of 
optimized scenario-dependent protocols for wastewater 
sampling, standardized sample processing methods, and 
advancements in enrichment techniques for pathogen 
DNA/RNA. Additionally, there is a need for dedicated 
reference genome databases for pathogens detectable in 
wastewater as well as scalable bioinformatics methods to 
accommodate diverse pathogens and surveillance scenar-
ios effectively.
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