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Abstract 

Background Diphtheria has been re-emerging around the world at alarming rates, raising concerns about emer-
gency preparedness, especially when global supplies of life-saving diphtheria antitoxin are insufficient. Outbreaks 
have occurred in areas with suboptimal coverage of the three-dose diphtheria tetanus and pertussis (DTP3) 
vaccine and regions experiencing conflict, but systematic studies assessing the association between these vari-
ables and the risk of diphtheria emergence are limited. This population-level study investigated the relationship 
between fatalities from armed conflict, childhood DTP3 vaccination coverage, and the presence of reported diphthe-
ria cases in countries in the World Health Organization’s (WHO) African region from 2017 to 2024.

Methods The analysis was conducted at a subnational geographic scale (I countries = 35, N subnational 
regions = 541). Data sources include DTP3 coverage from the Demographic Health Surveys (DHS), conflict-related 
fatalities from the Armed Conflict Location and Event Database (ACLED), and diphtheria cases from the WHO. We first 
assessed whether a history of fatalities from armed conflict is a predictor of childhood DTP3 coverage using mixed-
effects beta regression. To assess the relationship between conflict and diphtheria emergence, we fit a crude logistic 
regression model to assess their overall association in the study period, as well as repeated measures mixed-effects 
models to estimate the relationship between time-varying rates of conflict-related fatalities and diphtheria status, 
adjusting for diphtheria vaccine coverage estimates.

Results Conflict and subsequent childhood DTP3 vaccine coverage were negatively associated (odds ratio 
[OR] = 0.93, 95% CI 0.88–0.98). Conflict is also a significant predictor of diphtheria presence, both in the crude 
(OR = 1.41, 95% CI 1.17–1.68) and best-fitting repeated measures model (OR = 30.30, 95% CI 23.30–39.39), though risk 
varied by location. The best-fit model also associated lower estimates of diphtheria risk in areas with high (> 80%) 
and low (< 25%) vaccine coverage, though this is possibly due to underreporting of the true burden of disease in low-
resource settings.

Conclusions This exploratory analysis indicates that conflict-related fatalities are potentially helpful indicators of sub-
national diphtheria risk in countries in the WHO African region from 2017 to 2024. Further, it may be especially useful 
in cases where estimates of population-level diphtheria immunity are limited.
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Background
Diphtheria is a severe disease most commonly caused 
by toxigenic strains of the Corynebacterium diphtheriae 
bacterium. While it was once a leading cause of child-
hood morbidity and mortality [1], the introduction of 
effective therapeutics and the three-dose diphtheria 
tetanus pertussis (DTP3) vaccine (diphtheria vaccine 
first introduced in 1923) have substantially reduced the 
burden of diphtheria cases and deaths [2]. The success 
of campaigns such as the World Health Organization’s 
(WHO) expanded program on immunization (EPI) in 
1974 [1, 2] effectively reduced diphtheria annual inci-
dence to a low of around 5000 cases worldwide in the 
mid-2010s [3]. However, despite this historical progress 
towards control and elimination, diphtheria has been 
recently re-emerging at an alarming rate [3], though its 
re-emergence has not been homogenous [4, 5].

Diphtheria infections can be either cutaneous or res-
piratory, though respiratory infections are much more 
likely to cause severe disease and death and are the only 
form that requires mandatory reporting to the WHO [6]. 
Transmission occurs via droplets or contact with infected 
lesions [6]. The DTP3 vaccine is protective against symp-
tomatic disease, with an estimated 87% effectiveness for 
those who are fully vaccinated [6]. However, since the 
vaccine stimulates the production of antibodies against 
the toxin and not the bacteria itself, it does not prevent 
colonization [6]. Thus, vaccinated individuals can still 
become infected, although they are much more likely to 
become asymptomatic carriers.

Treatment of diphtheria requires timely administra-
tion of both antibiotics and diphtheria antitoxin (DAT): 
antibiotics are needed to clear the infection, while DAT is 
necessary to limit morbidity and mortality [7]. With the 
success of vaccination campaigns worldwide, infectious 
disease specialists and public health officials were opti-
mistic that these efforts would successfully eradicate the 
risk of large diphtheria outbreaks [8, 9]. However, due to 
this successful reduction in incidence, demand for DAT 
fell in the second half of the twentieth century, leading to 
decreased production and dwindling stockpiles, resulting 
in a global shortage of DAT supply and minimal manu-
facturing capability. Consequently, it is difficult for pub-
lic health agencies to maintain or establish regional DAT 
stockpiles [10]. Given the rapid reduction in DAT effec-
tiveness associated with delay in treatment [6], regional 
DAT stockpiles are essential for timely administration to 
prevent fatalities from diphtheria infection [10].

Vaccination coverage and prompt administration of 
DAT both impact morbidity and mortality. As such, 
the observed case fatality rates (CFRs) among diph-
theria outbreaks can vary considerably from 0 to 69% 
[1, 6, 11]. While the average CFR declined to 7% in the 

1940s–1950s, the CFR in modern outbreaks has ranged 
widely from 0.6 to 69% [6, 12–14], largely because mod-
ern outbreaks have typically occurred in resource-lim-
ited settings with variable DTP3 vaccination coverage 
and variable access to DAT [12].

Notable modern diphtheria outbreaks include a dec-
ade-long, multi-country outbreak in the 1990s in states 
formed by the collapse of the Soviet Union [15], sepa-
rate outbreaks in Bangladesh among Rohingya refugees 
and in Yemen in 2017 [13, 16], and a multi-country out-
break in western Africa originating in Nigeria in 2023 
[14]. Understanding the regional risk of diphtheria 
outbreaks is important to shore up regional stockpiles 
of DAT to ensure prompt delivery of DAT and other 
public health measures to reduce infections and fatality 
rates.

Recently, it has been proposed that conflict and politi-
cal unrest may be common causal risk factors of diph-
theria outbreaks [17]. Truelove et  al. [6] noted that 
recent outbreaks in Venezuela, Yemen, and among the 
Rohingya were associated with displaced populations 
and infrastructure failures. Dureab et al. [17] found that 
the risk of a diphtheria outbreak in a health district in 
Yemen increased by 11-fold if the district was currently 
experiencing conflict and that high levels of DTP3 cov-
erage were not significantly protective when accounting 
for conflict. Diphtheria is a vaccine-preventable disease 
(VPD), and outbreak risk is highly correlated with vac-
cination coverage [18]. However, it is unknown what 
levels of DTP3 coverage equate to increased diphtheria 
outbreak risk or how DTP3 coverage varies with armed 
conflict. To investigate these relationships, we used the 
WHO’s strategic framework for vaccine-preventable 
diseases [19], which includes three main steps to pre-
vent outbreaks: (1) promoting vaccine coverage, (2) 
adequate surveillance of emerging cases and vaccine 
coverage rates, and (3) emergency preparedness for large 
outbreaks. As such, we hypothesize that conflict could 
be related to diphtheria re-emergence risk in two ways: 
(1) by impacting the health infrastructure in a way that 
reduces vaccine coverage in the population or (2) con-
flict could affect public health infrastructure by reducing 
capacity for case surveillance or public health emergency 
preparedness (Fig.  1). The hypothesized causal diagram 
in Fig.  1 represents a simplified relationship between 
diphtheria and conflict and does not account for many 
unmeasured potential confounders, mediators, or com-
peting risk factors such as vaccine misinformation, 
targeted attacks directly on healthcare workers or health-
care infrastructure, etc. However, it does illustrate the 
potential for conflict to affect outbreak risk via a route 
mediated by vaccine coverage as well as one independent 
of vaccine coverage.



Page 3 of 12O’Sullivan and Keegan  BMC Global and Public Health            (2025) 3:40  

Here, we aim to address gaps in knowledge surrounding 
diphtheria re-emergence and these potential risk factors 
by systematically investigating the relationship between 
diphtheria disease occurrence, DTP3 vaccination cov-
erage, and the weekly prevalence and severity of armed 
conflict in the member countries of the WHO’s African 
region from 2017 to 2024. We focus our analysis on the 
WHO African region due to the series of recent diph-
theria outbreaks occurring in the region [14]. Because 
of high levels of within- and between-country hetero-
geneity of DTP3 vaccine coverage [20], armed conflict 
[21], and diphtheria cases throughout the WHO African 
region [14], we conducted our multi-country population-
level analysis at a subnational geographic scale (admin-
istrative level 1 [ADM1]). This spatial scale was selected 
to use data at the finest spatial scale available for DTP3 
vaccination coverage across the WHO African region’s 
member countries since country-level analyses are likely 
to obscure spatial clustering of unvaccinated populations 
that are critical for infectious disease outbreaks to arise 
[22].

Methods
Data
Since the primary outcome of interest is the diphtheria 
status of each ADM1 region over time, we used sub-
national diphtheria case data from the WHO African 
region’s weekly bulletin on outbreaks and other emergen-
cies [23]. The reports included in our analysis were pub-
lished weekly from March 2017 to March 2024 with rare 
exceptions (Additional file  1: Supplemental methods) 

and include case counts and other metadata. Although 
the WHO bulletins are published weekly, there were 
often delays in diphtheria case reporting from ongoing 
outbreaks, which were not updated for each location 
at regular time intervals. As a result of this uncertainty 
regarding the exact timing of reported diphtheria cases 
and because most diphtheria infections are asymptomatic 
or paucisymptomatic, it is, therefore, likely that reported 
cases represent an underestimate of the true burden of 
diphtheria infections. Consequently, we used a binary 
outcome of diphtheria status rather than modeling the 
case counts themselves. ADM1 regions were classified 
as being in a “diphtheria present” state if they reported 
more than one new diphtheria case in the past 24 weeks 
and “diphtheria absent” if not, even though it is possible 
that diphtheria transmission was occurring under the 
radar of detection. Both suspected and confirmed diph-
theria cases were included in this case definition. For the 
Nigerian diphtheria outbreak, which was the largest out-
break during the study period, the WHO weekly bulletins 
began reporting cases in aggregate. Thus, when available, 
we supplemented the diphtheria case data from the more 
detailed Nigerian Center for Disease Control’s (NCDC) 
situation reports [24].

Conflict data were taken from the Armed Conflict 
Location and Event Data Project (ACLED) database 
[25]. Conflict event locations were assigned to ADM1 by 
establishing a 1-km buffer around each latitude and lon-
gitude point location and were assigned to any ADM1 
region that overlapped the buffered area. To measure 
conflict severity, the specific variable of interest was the 

Fig. 1 A simplified directed acyclic graph (DAG) evaluating potential causal relationships between conflict, DTP3 vaccination rates, and diphtheria 
outbreaks. The left arm of the DAG reflects how armed conflict may affect diphtheria outbreak risk via the WHO VPD Strategic Objective 1 [19], 
hypothesizing that conflict events may reduce vaccination rates, subsequently increasing the population’s susceptibility to diphtheria outbreaks. 
The right arm of the DAG indicates that conflict events might impact the risk of diphtheria outbreaks in a mechanism independent of reducing 
vaccination rates, such as population migration and crowding, or affecting the ability of areas to achieve the WHO’s VPD Strategic Objectives 2 
and 3, which focus on disease surveillance and emergency response capacity [19]
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total number of ACLED-reported conflict-related fatali-
ties reported within each ADM1 in the previous 4-year 
period, calculated as a rate per 100,000 residents of each 
ADM1. Because the years of analysis were 2017–2024, 
the years of conflict data included in the cumulative 
4-year fatalities ranged from 2013 to 2024.

All population-adjusted variables were established by 
estimating the population sizes for each ADM1 using 
LandScan’s 2022 global 1-km population raster [26] and 
overlaying with administrative polygon data from the 
Global Database of Administrative Regions (GADM) 
[27].

Childhood diphtheria vaccine coverage for each ADM1 
region was established from the Demographic Health 
Survey (DHS) variable of the estimated DTP3 vaccine 
coverage among children ages 12–23 months within each 
region [26] and spatially joined with the GADM admin-
istrative regions. Since DHS surveys were not recorded 
annually for each country, the time-varying diphtheria 
coverage was estimated based on the most recent survey 
year until new estimates were reported.

Inclusion and exclusion criteria
Countries were eligible for inclusion if they were mem-
bers of the WHO African region, had ADM1-level esti-
mates of childhood DPT3 vaccination rates from the 
DHS since 2004, and had armed conflict data reported by 
the ACLED from 2013 to 2024. If a country was included, 
all ADM1s for that country were included in the analysis 
as the unit of observation (Fig. 2).

All member countries of the WHO African region 
(N = 47 countries) were eligible for inclusion in this 
analysis. Ten countries were excluded due to not hav-
ing subnational data on diphtheria vaccine coverage, and 
two were further excluded due to not having complete 
conflict data, leaving 35 countries in the analysis and a 
total number of 541 distinct ADM1s (Fig. 2). All ADM1 
regions from the countries included in the study were 
included, with one exception being an ADM1 region in 
Mali with missing DHS survey data. See Additional file 1: 
Table S1 for a complete list of all included countries and 
details about the missing ADM1 region.

For the sub-analysis with vaccination coverage as the 
outcome, countries and their respective ADM1 regions 
were limited to countries and years with childhood DTP3 
coverage estimates from the DHS surveys from 2016 to 
2023 (N = 35 countries, N = 541 ADM1s), but the number 
of observations for each location varied from one to six 
depending on the number of DHS surveys that were con-
ducted for each location between 2016 and 2023.

Statistical analyses
All statistical analyses were conducted using the R statis-
tical software version 4.4.2 [28].

Model with vaccination coverage as an outcome
To test our first hypothesis, we assessed the relation-
ship between a local history of conflict and subsequent 
vaccine coverage (as visualized by the left arm in Fig. 1) 
using a model with survey-estimated DTP3 childhood 

Fig. 2 Inclusion and exclusion criteria for countries included in the analyses
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vaccination coverage as the outcome and the recent his-
tory of conflict as a predictor. This model was run as a 
mixed-effects beta regression model with a logit link 
using the glmmTMB R package [29]. The outcome vari-
able was the proportion of eligible children reporting 
completion of the DTP3 vaccine series in each ADM1 
and year the survey was conducted. The log-transformed 
number of cumulative conflict-related fatalities per 
100,000 residents from the prior 3 years and the year 
the survey was conducted (4 years total) was the sole 
predictor included in the model as a fixed effect. We 
also included ADM1 (state) and country, or administra-
tive level 0 (ADM0) as random effects, so each state and 
country had its own random intercept. The coefficient for 
the fixed effect was exponentiated to get the odds ratio 
(OR), and the confidence intervals were calculated using 
the Wald method [30]. We refer to this model as the “vac-
cine model.”

Models with diphtheria status as outcome
To test the relationship between conflict and diphtheria 
status, we conducted a series of models with conflict as a 
predictor and reported diphtheria status as the outcome. 
The first is a crude model that examines a general associ-
ation between conflict and diphtheria emergence without 
accounting for temporality or vaccination coverage. The 
following three models increase in complexity to account 
for repeated measures and vaccine coverage.

Crude model To test the crude relationship between 
conflict-related fatalities and diphtheria status, we first 
used a univariate generalized linear model with a logit 
link with whether diphtheria presence was ever reported 
from 2013 to 2017 as the binomial outcome and the log-
transformed number of cumulative conflict-related fatali-
ties per 100,000 residents from 2013 to 2024 as the sole 
predictor. We refer to this as the “crude model.”

Repeated measures models To measure the longitudinal 
relationship between these conflict and diphtheria status 
variables and adjust for vaccine coverage, we conducted 
three competing mixed-effects generalized binomial lin-
ear models with logit links using the lme4 R package [31]. 
These “repeated measures models” include time-varying 
data updating at a weekly timescale and have time-vary-
ing diphtheria status (diphtheria present or absent) as the 
response variable. The first model, RMCV-L (repeated 
measures conflict vaccination-linear), included two lin-
ear terms as predictors: the log-transformed prior 4-year 
window of cumulative fatalities per 100,000 residents 
as the measure of conflict severity and the most recent 
DHS diphtheria childhood vaccine coverage estimates. 
The second model, RMCV-Q (repeated measures conflict 

vaccination-quadratic), included the same linear term for 
the measure of conflict severity and a quadratic term for 
vaccination coverage to address the heteroskedasticity of 
errors in the RMCV-L model. The vaccine coverage linear 
and quadratic terms were centered and scaled to aid in 
model convergence. The third repeated measures model, 
RMCV-C (repeated measures conflict vaccination-cate-
gorical), converted the vaccination coverage term from 
a continuous measure to a categorical with three levels 
of vaccine coverage: ≤50% coverage as “low,” 50–80% as 
“medium,” and ≥80% as “high,” as these categories match 
the existing literature’s classification of DTP3 vaccination 
coverage levels [20]. In all three repeated measures mod-
els (RMCV-L, RMCV-Q, and RMCV-C), we also included 
ADM1 and ADM0 as random effects, so each ADM1 and 
ADM0 had its own random intercept. Model compari-
son between the three repeated measures models was 
evaluated based on AIC, and where ORs are reported, 
their 95% confidence intervals (CIs) are calculated via the 
Wald method [30]. For additional model specifications, 
see Additional file 1: Supplemental methods.

Results
The primary outcome was reported diphtheria presence 
from March 2017 to March 2024, which occurred at least 
once in 47 (8.69%) of the 541 ADM1 regions. The median 
population-adjusted rates of cumulative conflict-related 
fatalities were higher among regions with diphtheria pre-
sent. The median number of cumulative conflict-related 
fatalities per 100,000 residents from 2013 to 2024 in areas 
with diphtheria present was 9.6 (interquartile range, IQR: 
3.7–16.3). By contrast, the median number of cumulative 
conflict-related fatalities per 100,000 residents in areas 
with only diphtheria-absent status was 2.6 (IQR: 1.0–
7.6) (Fig. 3A). The median time-weighted average of the 
survey-estimated childhood vaccination coverage was 
higher in areas that never reported the presence of diph-
theria cases (median: 79.6, IQR 67.5–88.8) than in ones 
that reported diphtheria presence at least once (median: 
65.2, IQR 42.1–70.9) (Fig.  3B). The number of ADM1 
regions that reported diphtheria presence also increased 
over time, with the vast majority occurring in 2023–2024 
(Fig. 4A). 

Vaccine coverage as outcome model
In the vaccine mode, with DTP3 childhood vaccination 
coverage as the outcome, the cumulative conflict-related 
fatalities per 100,000 residents in the 3 years prior to and 
the year the survey was conducted was modestly associ-
ated with vaccine coverage, with an OR of 0.93 (95% CI 
0.88–0.98, p = 0.013). This indicates that with a one-unit 
increase in the logarithm of cumulative conflict-related 
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fatalities, the odds of vaccination coverage decreased by 
7% (Table 1).

Diphtheria status as outcome models
In the crude model, which only assessed the relation-
ship between total conflict-related fatalities from 2013 to 
2024 and whether each ADM1 region ever experienced 
a diphtheria present status from 2017 to 2024, the crude 
OR between the relationship of conflict-related fatalities 
and whether the ADM1 region ever reported diphtheria 
present is 1.41 (95% CI 1.17–1.68, p < 0.001). This indi-
cates that without accounting for temporality or spatial 
dependence, with one increase in the unit of the loga-
rithm of cumulative conflict-fatalities, the probability of 
reporting the presence of diphtheria increased by 41% 
(Table 1).

The best-fitting model of the three repeated meas-
ures models was the RMCV-Q model, which included 
both linear and quadratic terms for childhood DTP3 

vaccination coverage (ΔAIC = 138.01). All three 
repeated measures models accounted for temporality 
between the conflict-related fatalities, childhood DTP3 
vaccine coverage estimates, and ADM1 diphtheria sta-
tus while also accounting for time-invariant character-
istics of each ADM1 and ADM0 location. Compared 
to the crude model, the OR for conflict severity in the 
repeated measures models increased substantially to 
15–30. In the best fitting model, RMCV-Q, the OR for 
the conflict-related fatalities was 30.30 (95% CI 23.30–
39.39, p < 0.001), indicating that an increase in the log 
number of population-adjusted 4-year conflict-related 
fatalities is associated with a 30 times higher risk of 
reporting the presence of diphtheria cases, though 
the 95% CI spans a wide range. Though the model-
predicted probability of diphtheria risk increased with 
higher conflict severity, the predicted risk estimates 
varied depending on the random intercepts for AMD0 
and ADM1 (Fig. 5).

Fig. 3 Violin plots depicting the densities of observed data for each predictor variable by the diphtheria status of each administrative level 1 
(ADM1) region. “Diphtheria present” regions reported diphtheria cases at least once during 2017–2024 (ADM1 regions, N = 47), whereas “diphtheria 
absent” regions were never classified as diphtheria present during the study period (ADM1 regions, N = 494). The vertical gray lines within each 
density plot indicate the minimum, 25th quartile, median, 75th quartile, and maximum values, respectively. A The cumulative population-adjusted 
counts of conflict-related fatalities from 2013 to 2024 for each administrative level 1 (ADM1) region in the analysis, with the x-axis on a log scale 
for readability. B The time-weighted average of survey-estimated childhood three-dose diphtheria-tetanus-pertussis vaccination coverage for each 
ADM1 region from 2017 to 2024
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The repeated measures models also included survey-
based estimates of childhood DTP3 vaccination cover-
age. Surprisingly, in the RMCV-L model, higher DTP3 

vaccination rates were associated with diphtheria present 
status (OR = 1.15, 95% CI 1.12–1.17, p < 0.001). The direc-
tion of this relationship was the opposite of what was 

Fig. 4 Plot of subnational ADM1 (administrative region level 1) regions in the analysis classified as “diphtheria present” over time and space. A 
Timeseries plot of ADM1 regions in the analysis classified as “diphtheria present” between March 2017 and March 2024. B Map of all eligible ADM1 
regions, with dots representing their centroids colored by diphtheria status, with orange as diphtheria present at least once during the study 
period, and purple as only diphtheria absent. The size of the dots indicates the cumulative reported conflict-related fatalities per 100,000 residents 
from 2013 to 2024. Any country or ADM1 region without a dot was not included in the analysis. The base map tiles are provided by Mapbox and are 
based on data from OpenStreetMap and its contributors. © Mapbox © OpenStreetMap contributors
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Table 1 Model-estimated coefficients for fixed effects and their standard errors

The vaccine model has DTP3 vaccination coverage as the outcome variable and uses a beta regression mixed-effects model with a logit link. All other models have 
diphtheria status (present or absent) as the outcome and use binomial fixed- or mixed-effects models with a logit link

Model name (dependent variable) Predictor
variable

Coefficients Std. error z value p value ΔAIC

Vaccine (vaccine coverage) Intercept 1.28 0.12 10.83  < 0.001 –

log (conflict-fatalities per 100 k + 1)  − 0.07 0.03  − 2.48 0.013

Crude (diphtheria status) Intercept  − 3.03 0.26  − 11.5  < 0.001 –

Log (conflict-fatalities per 100 k + 1) 0.34 0.09 3.66  < 0.001

RMCV-L (diphtheria status) Intercept  − 41.03 2.34  − 17.55  < 0.001 138.0

Vaccine coverage 0.14 0.01 12.80  < 0.001

log(conflict-fatalities per 100 k + 1) 3.316 0.13 25.26  < 0.001

RMCV-Q (diphtheria status) Intercept  − 30.15 2.32  − 13.00  < 0.001 0

Vaccine coverage rescaled  − 2.44 0.65  − 3.79  < 0.001

Vaccine coverage^2 rescaled  − 2.49 0.37  − 6.69  < 0.001

Log (conflict-fatalities per 100 k + 1) 3.41 0.13 25.46  < 0.001

RMCV-C (diphtheria status) Intercept  − 71.79 3.78  − 19.01  < 0.001 287.7

Vaccine coverage: Med (50–80%) 45.67 3.35 13.62  < 0.001

Vaccine coverage: Low (< 50%) 44.35 3.37 13.16  < 0.001

Log (conflict-fatalities per 100 k + 1) 2.72 0.11 23.77  < 0.001

Fig. 5 The predicted probability of reporting diphtheria presence (gray lines) for each administrative level 1 (ADM1) by the log-transformed 
number of conflict-related fatalities in theprevious 4 years. Lines are shifted left or right depending on their random intercepts for each country 
and ADM1. Orange points along the top indicate the observed data indicating ADM1 regions with reported diphtheria presence. Purple points 
along the bottom of the graph indicate observed ADM1 regions with diphtheria absent status. To illustrate a single model-predicted probability 
of diphtheria presence for each ADM1 region, vaccination rates were set to the median for each location
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expected, as it indicates that a 1% increase in childhood 
vaccination coverage is associated with a 15% increase in 
the risk of diphtheria presence. However, this model with 
a linear term for vaccination coverage was misspecified, 
as it did not pass the assumption of homogenous errors 
and was greatly outperformed by the RMCV-Q model 
(ΔAIC = 138.01), indicating that the linear fit of vaccine 
coverage to diphtheria presence was not appropriate.

The RMCV-Q model included an additional quad-
ratic term for DTP3 vaccination coverage, which helped 
address some heteroskedasticity of the errors in the 
RMCV-L model. This changed the model-estimated rela-
tionship between vaccination coverage and diphtheria 
presence, where diphtheria presence risk was lowest in 
areas with low (< 25%) and high (> 80%) DTP3 vaccine 
coverage (Additional file 1: Fig S1).

The final repeated measures model, RMCV-C, included 
vaccination coverage as a categorical term to the model, 
with levels of low ( ≤ 50%), medium (50–80%), and high 
(> 80%). With these categorical breakdowns, there were 
no locations that reported diphtheria cases with high 
levels of vaccination coverage (> 80%), which made the 
model-estimated effects of vaccination difficult to estab-
lish and led to extremely high estimates of the protective 
effect of high vaccination coverage (Table 1). The model 
also performed worse than either of the other repeated 
measures models and was greatly outperformed by the 
RMCV-Q model (ΔAIC = 287.69), indicating that the 
quadratic fit for vaccination was more optimal than using 
categorical vaccination levels.

Discussion
We investigated the relationship between population-
level risk of childhood diphtheria-containing vaccine 
coverage, reported diphtheria cases, and regional con-
flict, measured by conflict-related fatalities. The model 
with vaccine coverage as the outcome variable provides 
evidence to support the hypothesis that regions with a 
history of conflict have lower subsequent childhood vac-
cination coverage. The best-fitting model with diphthe-
ria status as the outcome provides evidence supporting 
a strong relationship between historical conflict sever-
ity and subsequent diphtheria outbreaks, even when 
including random effects of each state and country and 
when accounting for childhood vaccine coverage esti-
mates. This supports similar findings from a subnational 
study of conflict and diphtheria in Yemen in 2017 [18]. 
Areas with high vaccine coverage (> 80%) did not have 
any reported diphtheria presence, indicating a protec-
tive effect of high population-level immunity. However, 
this relationship was not straightforward as we found 
that rather than a monotonically decreasing associa-
tion between DTP3 childhood vaccination rates and the 

risk of diphtheria presence, the relationship determined 
from our best-fitting model was quadratic with a peak in 
reported diphtheria presence among states with DTP3 
around 50%. One potential explanation for this observed 
relationship is due to a high degree of misclassification 
of childhood DTP3 coverage in our analysis, which was 
based on surveys conducted at irregular time intervals by 
the DHS and not on systematic reporting of vaccination 
administration directly [26]. Another possible ration-
ale is that childhood DTP3 vaccination coverage does 
not adequately represent the overall population level of 
immunity against diphtheria, either from historical child-
hood DTP3 vaccination rates, partial childhood vaccina-
tion (i.e., DTP1), adult booster coverage, or immunity 
from prior infection [33]. A third explanation may be that 
places with low vaccination coverage have poor health 
infrastructure and may not have the surveillance sys-
tems to detect diphtheria cases. By contrast, places with 
high vaccination coverage may have surpassed the criti-
cal vaccination threshold, preventing diphtheria spread. 
Seroprevalence surveys, along with fine-scale DTP3 and 
booster vaccination coverage data, may help illuminate 
the observed limited impact of DTP3 vaccination rates on 
diphtheria outbreak risk [34]. Although these are costly 
and unlikely to be conducted at scale or regular intervals, 
given the substantial increase in diphtheria presence fol-
lowing the COVID-19 pandemic, a deeper understanding 
of diphtheria risk is crucial.

Our results indicate that data on recent armed con-
flict may be helpful for public health response planning, 
particularly in areas with limited access to vaccination 
coverage data. The high degree of dangerous and vio-
lent conflict events may limit the usefulness of this tool 
in affected regions since efforts to bolster public health 
infrastructure may not be feasible in these highest-risk 
locations [35]. Even if this is the case, having insights 
into the risk of diphtheria outbreaks in these populations 
could still guide regional resource planning for diphthe-
ria antitoxin stockpiles, training clinicians to promptly 
recognize diphtheria symptoms, establish laboratory 
capacity for expedited confirmatory testing, or education 
campaigns to raise public awareness of diphtheria. There 
have been recent efforts to renew treatment guidelines 
for diphtheria and to ensure diphtheria antitoxin should 
be distributed globally by need [36]. This is a preliminary 
study to assess whether conflict could be used to assess 
DAT needs prospectively, which could prevent situations 
that have recently occurred where DAT was unavailable 
for outbreaks in Africa [37, 38]. This information is rel-
evant to guide planning in geographic regions surround-
ing conflict-affected areas, especially if there are large 
migrations of individuals from high diphtheria-risk areas 
as refugees [13].
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There are a number of limitations of this analysis and 
areas for future study. The data of reported diphthe-
ria cases are likely an underestimate of the true burden 
of disease. However, it is expected that in areas with 
destabilized public health infrastructure due to a higher 
frequency of conflict events, the surveillance would be 
less effective, decreasing the probability of detecting 
diphtheria cases and small outbreaks. Thus, we expect 
that if all diphtheria cases were accurately reported, this 
would strengthen the observed relationship between 
past conflict and diphtheria risk rather than mitigating 
it. Another limitation is that this analysis does not take 
into account the outbreaks of neighboring countries or 
temporal autocorrelation. Future studies could expand 
on this exploratory analysis to establish more robust 
estimates of the risk factors for diphtheria outbreaks by 
including a mechanism for diphtheria case importation 
and a model incorporating a time-dependent error struc-
ture. Additionally, future studies could use similar meth-
odologies to assess the relationship between conflict and 
diphtheria emergence in other regions of the world, as it 
is not clear whether these results would be generalizable 
to other regions undergoing high levels of conflict such as 
Ukraine.

Finally, the link between diphtheria emergence risk, 
vaccination coverage, and conflict are all likely to be con-
founded by other variables that were unmeasured and 
thus unavailable to be included in this analysis. Because 
the study period spanned the COVID-19 pandemic, 
which impacted childhood vaccine uptake, behavioral 
patterns affecting respiratory disease transmission, and 
conflict, the observational methods in this study are 
limited in their ability to assess the relative importance 
of each and whether any are causally related to diphthe-
ria emergence. However, the combination of two trends 
is unsettling: childhood vaccine coverage remains lower 
than in pre-pandemic periods in many regions [39], and 
conflict events and the number of people in Africa inter-
nally displaced due to conflict has risen sharply in the 
past decade [40]. Assuming a causal effect, further con-
tinuation of these trends raises concerns for additional 
diphtheria outbreaks.

Conclusions
We found that a local history of severe armed conflict, 
as assessed by the number of resulting fatalities, is 
associated with subsequent reports of diphtheria pres-
ence in Africa from 2017 to 2024 and should be con-
sidered as a potential early signal of increased outbreak 
risk. Evidence from our analyses supports hypotheses 
that conflict can increase the risk of diphtheria both 
through lower vaccination coverage as well as via an 

independent mechanism. Although high levels of child-
hood DTP3 vaccine coverage were protective against 
the presence of reported diphtheria cases, we found 
that the relationship was somewhat complex, with esti-
mated diphtheria risk peaking around 50% DTP3 cover-
age. However, this may be an artifact of low diphtheria 
case reporting in low vaccine coverage areas. Because 
of this, we suggest that the history and severity of 
armed conflict may be an early indicator of increased 
risk of diphtheria if local vaccination coverage data are 
unavailable, as is often the case in low-resource set-
tings. Even for areas with reliable historical DTP3 vac-
cination coverage data, the ACLED armed conflict data 
are particularly useful due to their real-time reporting 
of geolocated conflict events. They are also available 
more quickly and at a finer spatial scale than most vac-
cination coverage estimates. As conflict increases in 
frequency and the number of refugees and internally 
displaced people (IDP) has increased across the globe 
[41], this information may become more salient for 
public health agencies to prepare for re-emerging diph-
theria outbreaks and infectious disease emergencies in 
general [42].
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